

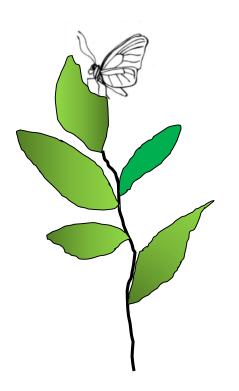
Agriculture et Agroalimentaire Canada



### Invasive Plant Biocontrol... How it works & prospects for SK

Rose De Clerck-Floate AAFC Lethbridge Research & Development Centre




## **Presentation Outline**

- Overview Canada's Weed Biocontrol Program
- Past successes → New & promising agents
- Getting good agents to stakeholders asap



#### **Classical Weed Biological Control**

Use of an invasive plant's natural enemies (insects or pathogens) from the plant's place of origin to reduce its populations to below damaging levels



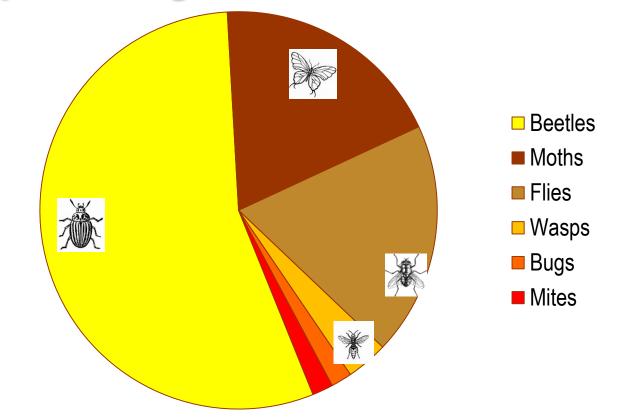
# Benefits of weed biological control (



- Host-specific
- Self-propagating & dispersing
- Can be very successful
- Long-term control
- Cost-effective (eg. 1:23 cost to benefit)

#### **Biological control often only option for mitigation** of weeds in natural areas




### Biocontrol agents released against Canada's weeds 1951-2021



- 86 species intentionally introduced against 34 targeted invasive plant spp
- 68% (59/86) species of released biocontrol agents are established in Canada
- ≈46% (27/59) of established agents have some level of impact on their weed

Distilled from Winston *et al.* (2021) *Biological Control: A World Catalogue of Agents & their Target Weeds* <u>https://www.ibiocontrol.org/catalog/index.cfm</u>

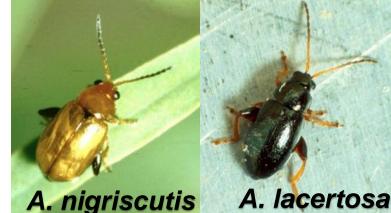
### What types of agents have established?

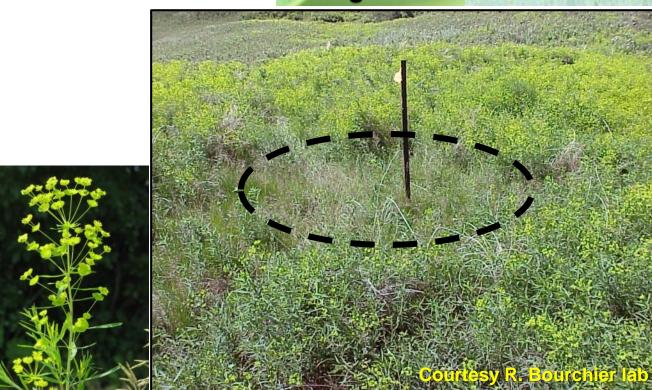


#### **Beetles are the Best!**

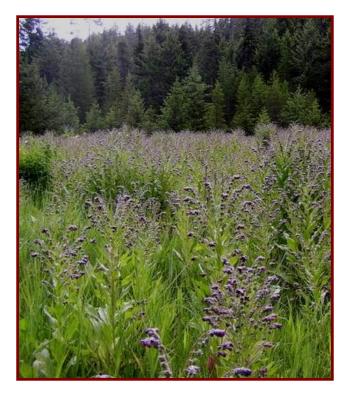
- Our top 10 agents for impact are beetles
- Generally easy to rear & survive handling well

## Weeds targeted for biocontrol since 1951 (with agent releases as of 2021)


- St. John's wort
- Tansy ragwort
- Field bindweed
- Hedge bindweed
- Leafy spurge
- Cypress spurge
- Canada thistle
- Bull thistle
- Nodding plumeless thistle
- Spiny plumeless thistle
- Scotch thistle
- Marsh thistle
- Perennial sowthistle
- Russian thistle
- Bladder campion
- Puncture vine


- Diffuse knapweed
- Spotted knapweed
- Meadow knapweed
- Russian knapweed
- Yellow toadflax
- Dalmatian toadflax
- Scentless chamomile
- Rush skeletonweed
- Purple loosestrife
- Houndstongue
- False cleavers
- Japanese knotweed
- Whiplash hawkweed
- Orange hawkweed
- Meadow hawkweed
- Dog-strangling vine
- Common reed
- Garlic mustard




## Impact of root-feeding beetles on leafy spurge

- Soon after release
- Reduced flowering stems
- Spurge plant mortality





# Biocontrol of houndstongue (Cynoglossum officinale) by Mogulones crucifer









- European import
- 9 yrs of testing
- Released in Canada 1997
- Very successful!



#### Houndstongue plant under heavy feeding by weevil

#### Unattacked houndstongue plant



# Impact of *Mogulones crucifer* on houndstongue density





#### *1999: year of release of 200 weevils*



#### 2001: few houndstongue left!

De Clerck-Floate & Wikeem (2009)

#### **Stages in Biocontrol Agent Development**

- 1. Overseas exploration
- 2. Risk assessment studies i.e. tests for safety ▶PETITION to CFIA for review
- 3. Rearing for initial studies and releases
- 4. Initial field releases
- 5. Establishment and impact assessment
- 6. Release strategy development (mass-rearing and distribution)
- 7. Ecological interactions/ long-term assessment



#### **Stages in Biocontrol Agent Development**

- 1. Overseas exploration
- Risk assessment studies i.e. tests for safety
  ▶PETITION to CFIA for review
- **3. Rearing for initial studies and releases**
- 4. Initial field releases
- 5. Establishment and impact assessment
- 6. Release strategy development (mass-rearing and distribution)
- 7. Ecological interactions/ long-term assessment



#### Pre-release host-specificity testing overseas





No-choice tests (what can they feed/develop on?)

Multiple-choice tests (what do they prefer to feed on?)

# Testing based on degrees of relatedness of plants relative to target weed

- 1. Same species as weed
- 2. Other species in same
  - genus
  - tribe
  - family
  - order
- 3. Representatives of other orders and groups more distantly related



#### Pre-release laboratory rearing & study of agents

#### AAFC - Insect Microbial Containment Facility, Lethbridge







#### **Biocontrol agents petitioned/close to petitioning**

| Agent                                                   | Weed          | Status 2022                                                                            |
|---------------------------------------------------------|---------------|----------------------------------------------------------------------------------------|
| Aceria angustifoliae<br>(flower-galling mite)           | Russian olive | Petition in review 2019-22                                                             |
| Dichrorampha aeratana<br>(root-boring moth)             | Oxeye daisy   | Petition in review 2021-22;<br>colony in quarantine (AAFC-<br>Lethbridge)              |
| Oxyna nebulosa<br>(root-galling fly)                    | Oxeye daisy   | Testing near complete; colony in quarantine (AAFC-Lethbridge)                          |
| <i>Microplontus millefolii<br/>(stem-boring weevil)</i> | Common tansy  | Testing near complete; insects<br>in quarantine ready for rearing<br>(AAFC-Lethbridge) |



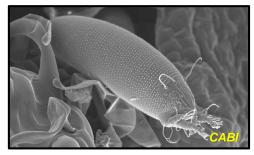
Aceria angustifoliae



Dichrorampha aeratana



Oxyna nebulosa




Microplontus millefolii

#### Russian olive gall mite (Aceria angustifoliae)

- Small, plant-feeding mite
- Very host-specific
- Creates 'galls' (deformities of leaves, flowers, fruits) – reduces tree reproduction & spread
- Mites overwinter in buds
- Multiple generations / season develop in galls
- Can reduce fruit production by ca. 40% without reducing trees value







#### Oxeye daisy (Leucanthemum vulgare)

- Introduced to Canada 1800s
- Invader of managed & native pastures
- Listed noxious weed seed (fed Seeds Act) – contaminates forage seed crops
- Noxious weed (BC, AB, SK, MB)
- Avoided by grazing cattle
- Shallow roots promote soil erosion

# Oxeye daisy root-boring moth (Dichrorampha aeratana)





- European & Asian origin
- Adventive in eastern (not western) Canada
- Adults emerge in spring, eggs laid on leaves/stems, larvae move into roots & base of stems where feed until winter, pupate in early spring
- Successful rearing in quarantine (Leth) since 2018

# Testing of oxeye daisy root moth on a native plant species (Arctic daisy) collected from the Yukon (2018)











# Petition for Canadian release of $1^{st}$ oxeye daisy agent $\rightarrow$ submitted to CFIA, November 2021



#### Key results:

- <u>Lab no-choice tests</u> could develop on11/74 test plant spp.
- <u>Outdoor choice tests</u> larvae only found on Shasta and creeping daisy
- But no impact on growth and reproduction of Shasta daisy (vs oxeye daisy)

Stutz et al. (2021)

#### Oxeye daisy root-galling fly (Oxyna nebulosa)





- Wide distribution Europe & western Asia
- Adults emerge throughout summer, eggs laid in leaves, larvae move to crown & roots where initiate their small, round, clustered galls, larvae develop and pupate in galls
- Successful rearing in quarantine (Leth) since 2019
- Used lab colony to test Arctic daisy – no galling
- Fly host-specific

#### Common tansy (Tanacetum vulgare)



- Aromatic perennial introduced to NA from Europe in 1600s
- Occurs in all provinces/territories except Nunavut
- Invades native & managed pastures, forests & riparian habitats
- Toxic to humans & livestock, but cattle avoid
- Listed noxious BC, AB, SK, MB

#### Common tansy stem-boring weevil (Microplontus millefolii)

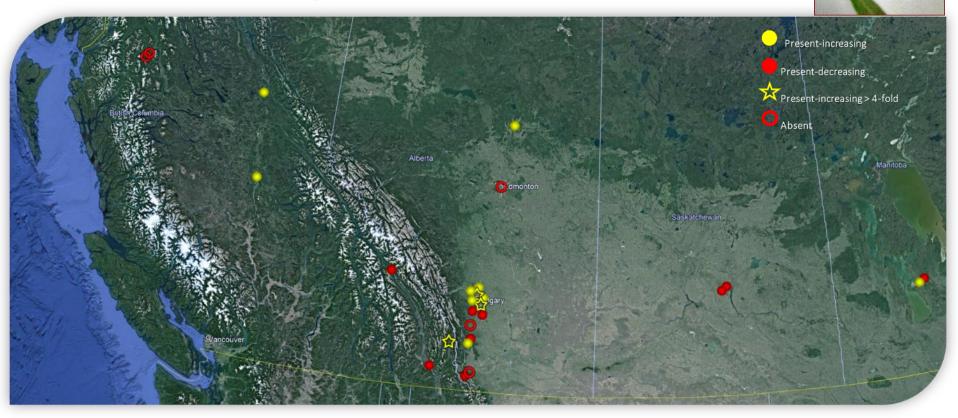




- Occurs W Europe to SE Siberia
- Adults emerge in summer, eggs laid on shoots, larvae develop to adults in stems.
- Narrow host range demonstrated
- Received only a few from Russia Oct 2021 (via CABI), in quarantine cold storage (Leth) & will attempt rearing 2022

#### **Stages in Biocontrol Agent Development**

- 1. Overseas exploration
- Risk assessment studies i.e. tests for safety
  ▶PETITION to CFIA for review
- 3. Rearing for initial studies and releases
- 4. Initial field releases
- 5. Establishment and impact assessment
- 6. Release strategy development (mass-rearing and distribution)
- 7. Ecological interactions/ long-term assessment




#### Yellow toadflax stem-galling weevil (Rhinusa pilosa)



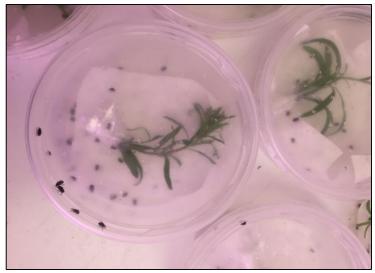
- Introduced from Serbia very host-specific & good impact
- Adults emerge in spring, eggs laid in young shoots, larvae complete development to adult in galls, overwinter in litter/soil
- First releases in Canada 2014-2016 (AB, BC, SK, MB, ON, PEI, NS)

# Early assessment of *Rhinusa pilosa* establishment on yellow toadflax in Canada



Based on 2019 monitoring, some weevil populations were thriving and others disappearing 3-5 yrs after first releases (2014-2016).

### **Greenhouse watering experiment**

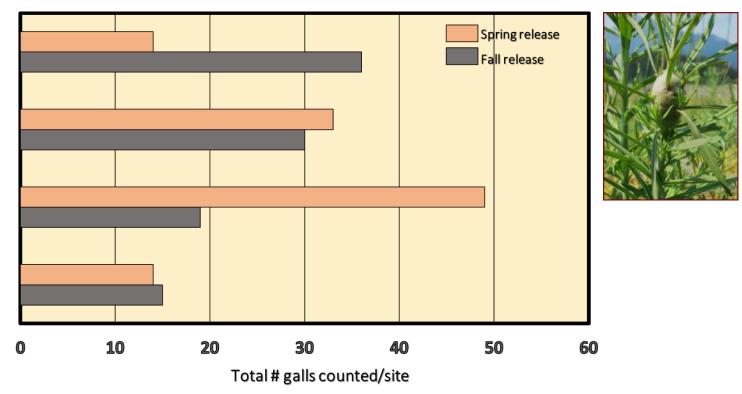

- 2 watering levels (dry & moist)
- 2 genetic strains of toadflax weevil

#### Rearing Rhinusa pilosa for field release










#### 'Farming' the Houndstongue Weevil 2002-2005



# Establishment of nursery sites for massproduction of Rhinusa pilosa?

#### Season to release Rhinusa pilosa?



- Can release either in spring or fall to get establishment.
- Recommendation for redistribution move galls with adults to new toadflax patches in fall

# A BIG THANKS to all those who make

#### our science possible!

- Collaborators from home & abroad
- Students (undergraduate and graduate)
- LeRDC Staff (Technicians, Support)
- Funders (AAFC, Provinces/States, Industry)







#### **Questions Anyone?**

